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TE HERENGA WAKA

@Al in crop management
“*Pest management
“*XAI crop recommendation system
“*Disease Identification by drones
“*Irrigation with Al
“* Advanced Machine Learning for Regional
Potato Yield Prediction

**Advancing crop productivity and
sustainability
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TE HERENGA WAKA

@®Why it is Important?

Agricultural pests are responsible for 20%-40% of
global crop production losses each year. Pest
infestations cost the global economy around $220
billion annually, with invasive insects alone causing
approximately $70 billion in damages.
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TE HERENGA WAKA

@ raditional Methods and Their Issues

Farmers use various pesticides to improve both crop
quality and storage life. While pesticides mitigate
yield losses, continuous usage of pesticides leads
to problems such as pesticide resistance, secondary
pest outbreaks, breakdown of host plant resistance,
environmental contamination, and potential health
risks to consumers.
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TE HERENGA WAKA

@ The Application of Al in Pest
Management

1. Pests Identification

v Installing vibration sensors on trees allows farmers
to capture faint vibrations produced by pest larvae.
Al analyzes these signals to identify characteristic
patterns, determining whether trees are infested.

v Integrating IoT and Al, drones or autonomous
robotic vehicles can capture orchard imagery. Al
processes these images to identify pest presence
and species, allowing targeted pesticide application.
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TE HERENGA WAKA

@ The Application of Al in Pest
Management
2. Pest Population Monitoring

Researchers have combined Al with smart traps to
identify and count pest species and populations. By
analyzing data from traps placed across farmland, Al
monitors pest conditions, enabling farmers to apply
pesticides only where infestations exceed thresholds,
avoiding indiscriminate spraying.
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TE HERENGA WAKA

@ The Application of Al in Pest
Management
3. Pest Infestation Alerts

In India, researchers collaborated with local farmers to
establish a cotton pest early warning system. When a
field shows infestation, farmers upload photos. Al
identifies the pest species and severity, sending alerts
to nearby farmers. This provides immediate, localized
advice, allowing early pesticide application, increasing
effectiveness while reducing chemical use.

AIML430 Seminar 2: AL in crop management
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@ The Application of Al in Pest
Management

4. Precision Spraying of Pesticides

Researchers have developed a machine learning-based
system for drone spraying area recognition in precision
agriculture. By classifying farmland and orchard

images captured by drones, the system distinguishes
between sprayed and non-sprayed areas. This enables
real-time autonomous spraying by drones. With further
improvements, the system could support remote
operations, facilitate precise pesticide application and
reduce chemical usage. Seminar 2: ALin crop management 8



B:M Crop diversification using XAl

TE HERENGA WAKA

® Crop diversification is a critical issue to meet the
increasing demand for food and to improve food safety
and quality.

@® This is considered a major issue due to diminishing
natural resources, limited arable land and unpredictable
climatic conditions.

@ XAI, suggests suitable crops for a region based on
weather and soil conditions.
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AgroXAl: System model

@® Models used: K-Nearest Neighbors (KNN), Random Forest (RF),
Decision Tree (DT), Support Vector Machine, (SVM), LightGBM (LGBM)

and Multilayer Perceptron (MLP) models to classify the crop.

Cloud Layer

[Crop Recommendations)

Physical Actual Instance S Lentil

sica

Layer Counterfactuall % . . e A Maize
Counterfactualz ... .t A i
Counterfactuals . b | e 4. . Mungbean

4+ ¥ Features to adjust for the alternative crop

Fig. 1: Proposed Edge Computing-Based Explainable Crop Recommendation System (AgroXAl)

AIML430 Seminar 2: AL in crop management 10



el AgroXAl: System model

@® Physical Layer: This layer includes sensors that measure the region’s
climate, soil structure, water resources, temperature and humidity,
and actuators that provide conditions that can be changed in the
region.

® Edgelayer: At this layer, for each geographic region, there are end
devices to analyze the locally collected data. These devices are
capable of running classicalML and XAlmethods.

@ Fog Layer: This layer includes hardware clouds that manage data
traffic between the edge and the cloudlayer and have the potential
to provide network control.

® CloudLayer:This layer includes resource-richnetwork devices that
can perform computation and storage tasks that cannot be
performed on edge systems in the proposed architecture.
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=M Data used and Model results

® Data used: https://www.kaggle.com/datasets/chitrakumari25/smart-agricultural-
production-optimizing-engine

@ 22 different crop types as target labels.

TABLE II: Dataset Features and Descriptions

Features Descriptions

Nitrogen Amount of Nitrogen in soil
Phosphorus Amount of Phosphorus in soil
Potassium Amount of Potassium in soil
Temperature The average soil temperatures
Humidity Amount of humidity

ph pH level of the soil

Rainfall Amount of rainfall

Target Types of crop

@® Classification results of ML models

TABLE III: Classification Results of ML Models

Precision Recall F1-Score Accuracy
KNN 97.1071 96.6667 96.6198 96.6667
RF 99 3395 90,2424 99,2312 99,2424
DT 98.5620 O8.4848 98.4742 98.4848
SvM 97.7694 97.4242 97.4163 97.4242
LGBM 97.7930 97.5758 97.5527 97.5758
MLP 95. 7698 95.6061 05.5945 95.6061
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=M XAl methods and results

XAI methods

Explain Like I'm 5 (ELI5):It provides both global and local explainability. ELI5 uses tree models for
calculating feature weights. The contribution of the feature to the decision is based on how much the
score has changed from parent to child at each node of the tree.

SHapley Additive exPlanations (SHAP): SHAP is an explainability method based on game theory. In this
method, a value called Shapley value is calculated for each feature, which expresses the contribution of
the feature to the outcome.

Local Interpretable Model-agnostic Explanations (LIME): LIME method examines how the model works
by changing the inputs and observing how the predictions vary. LIME is model-agnostic and provides
local explanations.

Counterfactual: Counterfactual is a human-friendly explainability method that explains the smallest
change in feature values and transforms the prediction into a predefined output.

Weight  Feature Weight  Feature
0.2276 £ 0.1840  Hunmudity 0.2404  Hunudity
0.1953 £0.1636  Rainfall 0.2361  Rainfall

0.1934 =+ 0.1850  Potassium 0.1712  Phosphorus
0.1459 = 0.1340  Phosphorus 0.1431 Nitrogen

0.1382 +£0.1366  Nitrogen 0.1330 Potassium
0.0633 = 0.0769 Temperature  0.0550 Temperature
0.0362 £ 0.0369 pH 0.0212 pH

Fig. 2: ELI5S global explanations for RF (Left) and LGBM
(Right)
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ELI5 and SHAP results

w=papaya [probability 0.955)] top features

y=grapes (probakility 0.022) top features

y=maize [probability 0.011) top features
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Fig. 3: ELIS local explanations for EF (Randomly selected sample test data:
55, Temperature = 34.28046, Humidity = 90.555618, pH = 6.825371, Rainfall = 98.540474)

Nitrogen = 44, Phosphorus = 60, Potassium =

y=papaya [probability 1,000, score 4.128)

y=chickpea |probability 0.000,

w=lentil [probability 0LDOD, score -6.521) top

top features scorz -b6.353) tog features Teaturses
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Fig. 4: ELIS local explanations for LGBM (Randomly selected sample test data: Nitrogen = 44, Phosphorus =
= 55, Temperature = 34. 28046, Humidity = 90.555618, pH = 6.825371, Rainfall = 98.540474)
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=M SHAP local and LIME explanations

WELLINGTON

TE HERENGA

@ Feature taking larger area contributes the highest. Features in red
have positive contribution and blue have negative.

higher 2 lower

fix) base value
-0.01
o.o8

—0.06 —0.04 —0.02 oo LY o.os LY

pH = 6.502985292000001 Phosphorus = 42.0 Potassium = 43.0 Mitrogen = 90.0 Humidity = 82.00274423
higheowe
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-6.99
—8.00 —7.75 —7.50 —7.25 —7.00 —6.75 —6.50 —6.25 —6.00 —5.75

Rainfall = 202.9355362| Phosphorus = 42.0Nitragen = 90.0

Fig. 6: SHAP local explanations for RF (Top) and LGBM (Bottom)- Randomly selected sample data: Nitrogen = 39, Phosphorus
= 77. Potassium = 21, Temperature = 22.997744, Humidity = 60.242188, pH = 4.603563, Rainfall = 159.689346

Prediction probabilities NOT lentil lentil NOT mothbeans NOT jute Jute
tentil [N 055 Rainfall = 121.91 Rainfall > 121.91 Rainfall = 121.91
mothbeans [007 | 0.08 008 0.06
jute 32.00 = Potassium <= ... 61.02 < Humidity <= ... 32,00 < Potassium <= ...
0.06 003 0.02
mungbean 37.00 < Nitrogen <— ... 28.00 < Phosphoms <., 37.00 = Nitrogen <= ...
Other 0.03 - 0.01 o.02
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- .01 001 !
35.00 22 76 < Temperature = 22.76 <= Temperature <... PpH = 6.92
o.01 .00 0.01
H > 6.92 32.00 < Potassium <= ... 22.76 = Temperature <...
.00 0.01

Fig. 7: LIME local explanations for RF (Used sample data: Nitrogen = 70, Phosphorus = 38, Potassium = 35, Temperature =
24.397362, Humidity = 79.268616, pH = 7.014064, Rainfall = 164.269699 )
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=M Counterfactuals results

TE HERENGA WAKA

® [n counterfactual explainability, each selected data sample is referred to as the “actual instance,” and
the class for selected data is predicted. In addition to this result, alternative counterfactual suggestions
are provided for the output.

250
200
150

100

-50

AIML430

TABLE IV: Counterfactuals for EF

Type of Instance  Nitrogen  FPhosphorus  Potassium  Temperature  Humidity pH Rainfall Label
Actual Instance 44 &0 55 34.28046 00.555618 6.825371 08540474 Papaya
Counterfactual-1 117 &) 55 34.281461 45.50041 6825371  DE.S550477 Banana
Counterfactual-2 44 &) 38 34.281461 60.18227 6825371  DE.S550477 Mango
Counterfactual-3 B85 () 55 34.281461 §5.20506 6825371 205154486  Rice

TABLE V: Counterfactual Explainability for LGBEM

Type of Instance  Nitrogen Phosphorus  Potassium  Temperature  Humidity pH Rainfall Label
Actual Instance EE! &l 53 EESENED O0.555618 6815371  OE540474 Papaya
Counterfactual-1 93 26 55 34.281461 90.655616 5916632  OR.550477 Banana
Counterfactual-2 137 &0 35 34.281461 45.35615 6825371 98.550477 Mango
Counterfactual-3 44 &l 55 34.281461 29.08982 6825371 2359863518 Rice
®  Aclual Instance L 250 ®  Aclual Instance o
* CF-1 * CF-1
* CF-2 * CF2
L CF-3 200 L CF-3
150
*
- 100 T * -

%0
L

L.
50 *
[ ® I ¢ T
®
I o | ®
_ o
| II

-50

Mitrogen Phosphorus Potassiom femperature Hurmadity pH Rainfall Mitrogen Phosphorus Potassium femperature Hurmadity pH Rainfall

(a) Counterfactuals for RF (b) Counterfactuals for LGBM
Fig. 9: Counterfactual Explainability of RF and LGBM models
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XAl Summary

® Choose the model wisely, there is generally a trade-off
between accuracy and interpretability.

@ Balance between optimizing the accuracy and ensuring
transparency for users.

@ If sensor security is not adequately ensured, malicious actors
could create privacy and security risks.

@ If the recommended crops are not suitable for local climate
conditions or soil characteristics, crop failure may occur,
leading to a significant decline in farmers’ income

AIML430 Seminar 2: Al in crop management 17



B:=M Disease Identification by drones

A comprehensive analysis of YOLO architectures for tomato

leaf disease identification (Ramos & Sappa, Scientific Reports,
2025)

* Tomatoes are a major global crop,
important for nutrition and rural
economies.

* Leaf diseases and nutrient
deficiencies cause major yield and
quality losses.

* Farmers usually rely on visual
iInspection, which is slow, error-
prone and unreliable at scale.

* UAV drones with cameras and Al
vision models can monitor fields
guickly and consistently.

* Aim: Benchmark recent YOLO
models (v8—v12) for tomato leaf
disease detection.

AIML430 Seminar 2: AL in crop management 18



Methods and dataset

» Dataset: Tomato-Village (14,368 field images, ~161k annotations)

* Six conditions: late blight, leaf miner, magnesium, nitrogen,
potassium deficiencies, spotted wilt virus

* Images captured under varied conditions (lighting, time of day, plant
ages) in Rajasthan, India

« Augmentations (rotation, cropping, brightness/contrast, flips) used
to expand training dlver5|ty

* YOLO (You Only Look Once): a fast, single-pass CNN-based object
detector that learns to draw boxes around diseased leaf areas and
classify the condition

e All YOLO versions (v8-v12) trained identically for fair comparison;
evaludated on precision, recall, mAP, training time, and inference
spee

AIML430 Seminar 2: AL in crop management 19



B:=M Disease Identification by drones

Results & Implications

YOLOvV11 = most accurate and balanced
(best for deployment)

YOLOv12 = strong alternative, fastest
lightweight variant for drones

YOLOvV10 = efficient, reliable, good mid-
tier choice i >

YOLOVS8 = solid baseline, slightly behind | &, <
newer versions R
YOLOV9 = weakest, slower and less
accurate

Overall finding: modern YOLO enables
reliable, real-time crop monitoring
Implication: advanced YOLO models
enable early disease detection, scalable
UAV monitoring, and reduced chemical
use

AIML430 Seminar 2: AL in crop management 20



Irrigation with Al

*Key Point: Irrigation conditions are not homogeneous
*Rainfall is uneven, groundwater availability varies, crops have different water needs
*Why it matters
* Traditional “one-size-fits-all” irrigation wastes resources
* Leads to inefficiency and environmental risks
*Al Potential
*Analyse big data (sensors, remote sensing, weather)
*Predict crop water requirements
*Support smart scheduling & resource allocation
*Enable human-in-the-loop and explainable Al
*Paper’s Aim
*Review premises, evaluation metrics, problems, and promises of Al in irrigation management
*Highlight both technical potential and sociallethical dimensions

AIML430 Seminar 2: Al in crop management
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=M Irrigation with Al

WELLINGTON

TE HERENGA WAKA

Paper: Wei H, Xu W, Kang B, et al. Irrigation with artificial intelligence: problems, premises, promises

Paper Structure

Data Science
Perspective ) i
Premise Algorithms & Systems
What do we need to build an Al- What models, algorithm or
| empowered irmigation system frameworks are available
Disciplinary
Perspective )
Evaluation

IT Al-irrigation system is built up,
\how to evaluate its performance?|

v
future? problems?

Promises If the um;g hp!a?ngance is
G EEESLUE acceptable, any remained

Seminar 2: Al in crop management 22
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=M [rrigation with Al

TE HERENGA WAKA

Typical AI-Assisted Irrigation System

Domain|Experts  End psers
Domain Knowledge
Data Preparation > Model Training
A
Data Acquisition . '
i Promote
Feedback loop i
i ---- | Trained Model
Sensors Merge into

Deployed

v

1—{ Control System ‘

AIML430

Key workflow:

» Data acquisition from sensors / IoT

» Data preparation & feature engineering with domain
knowledge & user input

* AImodel training, validation & deployment

* Control system executes irrigation decisions

* Feedback loop for continuous improvement

Note:

The original paper did not provide a system architecture.

- This diagram is my own synthesis based on related
literature.

Seminar 2: Al in crop management
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Irrigation with Al

Premises - Disciplinary & Data Science Perspectives

Disciplinary Perspective
* Farmers: focus on water efficiency, scheduling, cost, training, and data privacy
 Scientists: need advanced analytics, integration, extensibility
* Policymakers: require compliance, scalability, environmental & social benefits

Data Science Perspective
» Data requirements: soil moisture, weather, crop status, remote sensing, IoT
* Methods: ML/DL (prediction & scheduling), expert systems, DSS, hybrid
approaches
* Emphasis on pre-processing, integration, and model robustness

AIML430 Seminar 2: AL in crop management
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Irrigation with Al

Algorithms & Systems for Al Irrigation

What algorithmic options do we have for building Al irrigation systems?
From data-driven models to decision support, multiple approaches exist.

Machine Learning / DL Prediction, scheduling

Expert Systems Rule-based decisions

Remote Sensing Crop & soil monitoring

Hybrid Approaches Combine methods, improve accuracy
DSS Scenario support, scheduling
Multi-Agent / Crowd Feedback, adaptive solutions

Each option has strengths and limitations — no single method is sufficient alone.
The original paper lists methods, but does not unify them into a system framework.

AIML430 Seminar 2: AL in crop management 25



Irrigation with Al

Evaluation of Al Irrigation Systems

Once we build an Al irrigation system, how do we evaluate it?

Reliability Robustness, stability, error rates
Performance Accuracy, speed, scalability
Interpretability Transparency, explainable decisions
Ethics & Morality Data privacy, fairness, user autonomy
Social Impact Jobs, equity, sustainability
Cost-Effectiveness Feasibility, ROI, affordability

Evaluation goes beyond accuracy — it must consider reliability, ethics, and social value.

AIML430 Seminar 2: AL in crop management 26



Irrigation with Al

Problems with Al in Irrigation

Data perspective
* Limited availability and variable quality
* Weak pre-processing and poor integration of diverse sources

User perspective
* Lack of technical skills and training
* High costs, limited access for smallholders
* Trust, privacy, and security concerns

Integration perspective
+ Difficulty fitting into existing farm systems

* Resistance to new technologies
* Incomplete modelling of complex environments (e.g. microclimates)

These problems show that Al in irrigation is not just a technical challenge, but also social and systemic

AIML430 Seminar 2: AL in crop management 27



Irrigation with Al

Promises of Al in Irrigation

Better data use

* Fusion of sensors, remote sensing, weather, and IoT

» Improved scheduling, resource allocation, and sustainability
Human-centred Al

* Human-in-the-loop for feedback and trust

* Explainable Al for comprehensible, tailored outputs
Advanced methods

* Transfer learning & domain adaptation to new regions/crops

* Federated learning, differential privacy for secure collaboration
Emerging technologies

* Robotics & embodied intelligence for field operations

The future is not just smarter algorithms, but systems that are human-centred, secure, and sustainable.

AIML430 Seminar 2: Al in crop management 28



il Advanced Machine Learning for
Regional Potato Yield Prediction

Prince Edward Island
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Introduction

*Potatoes: key crop in Prince Edward Island (PEI), Canada
*Rain-fed farming - high sensitivity to climate variation
*Traditional regression models insufficient

*Research aim: apply ML to predict yield and analyze key drivers

AIML430 Seminar 2: AL in crop management 30



B8 Data and Features

TE HERENGA WAKA

@ [ime span:1982-2016, postal code-level
data

@\Variables:

® Climate: temperature, precipitation, agroclimatic indices
@ Soil: water retention capacity

@® Remote sensing: NDVI(vegetation index)

@Preprocessing: polynomial & power
transformations

AIML430 Seminar 2: AL in crop management 31



Methodology

@® Models tested:

® Linear(ridge, lasso regression)

@ Decision Tree

® Ensembles: random forest, gradient boosting, adaboost,

stacking

@ Validation: time-series cross-validation

Preprocessing

@® Metrics: MSE, RMSE, R?

Data
Integration

Data Feature Feature
Cleaning Scaling Selection

Train

|

RF
DT
GB

AB
Stacking (DT, GB, AB RF)

Voting (DT. GB, RF, LR)

LR

AIML430

B Test
Dataset
Model with )
P Best
Parameters
With
Grid Search

i ™\

Evaluation

il

Results

| —
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Results

WELLINGTON

TE HERENGA WAKA

*‘Random Forest: best performance (MSE = 0.014, RMSE =
0.119, R? = 0.99)

*Gradient Boosting also strong
*Linear models — weaker results

Decision Tree Orthogonal Matching Pursuit Ridge Regression Random Forest Gradient Boosting Lasso Regression
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=M Results

TE HERENGA WAKA

*SHAP values used for feature

importance

*Top drivers: NDVI (vegetation index),

Soil salinity

*‘Temperature-related features also

significant:

* Temp Avg Max, Temp Avg Min
* MS/SS/LS Temp Max/Min

*Precipitation and soil water retention:

moderate influence

*Key insight: yield depends on vegetation
health + soil + climate factors

AIML430
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TE HERENGA WAKA

@®Ensemble ML models capture complex
crop-environment relations

@Economic value: ~81,600 CAD benefit per
farm annually
@Limitations:
@ Sparse-farming areas — less accurate

@ Extreme yield values harder to predict

@ Limited generalization to other regions/crops
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M Conclusion and Future Work

TE HERENGA WAKA

® ML, especially Random Forest, effective for yield
prediction

@ Integration of climate, soil, and remote sensing
data boosts accuracy

@Future directions:
® Add Earth observation indices (e.g., Leaf Area Index)

® Extend to multiple crops/regions

@ Include socio-economic variables
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= Advancing crop productivity and sustainability

The rapid growth of the global population, expected to reach 10
billion by 2050, presents unprecedented pressure on agriculture to

sustainably increase production.

With the added challenges of dwindling water resources, shifting
climate patterns, and the loss of agricultural land, there is an urgent
need for innovative solutions to boost farm productivity and
efficiency. Among the most promising of these solutions is Artificial
Intelligence (AI), which has the potential to revolutionize agricultural
practices worldwide.
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Al in agriculture

Al is changing the face of agriculture from environmental effect

forecasts to efficient resource use and crop management.

Here’s three critical Al applications in agriculture for enhancing

production and sustainability:

Precision
Farming

®precision farming Jfﬁm

°machine learning

Al Technologies
in Agriculture

®agricultural robotics

Machine
Learning
Models

Agricultural
Robotics

—

. (i
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Precision farming

Abundant data have been collected from agricultural
environments using GPS and IoT devices for
precision farming. This dataset was used to obtain the
temperature, crop health, fertilizer availability, and
soil moisture levels. Al algorithms assess these data
to provide relevant and helpful recommendations to
farmers regarding the sowing, irrigation, and
harvesting of crops. Al-powered systems can
recommend the optimum quantity of water and
fertilizer to be treated on each field, reduce waste,
and ensure proper crop development.

Real Time Data collection
(GPS, 10T Device)

Genomics and genetic \
modification help Cost
improving existing varieties m @ Reduction
Protection of
Ground Water

Precision Farming
Agriculture
Technology
! P Resource
Data Analysis Applicaliun

AIML430

Increased Crop
Production

Reduce
Waste

J§Advancing crop productivity and sustainability

machine learning

These models can predict agricultural output through the
analysis of both historical and contemporary datasets.

This analysis helps farmers to enhance their planning
strategies and risk profiling associated with unpredictable
weather conditions. Moreover, machine learning algorithms
can detect trends indicative of illness or vermin, thereby
triggering early intervention measures.

(eg.Image recognition software might look for
anomalies in photographs of crops taken either from
in-field cameras or drones to identify nutritional
deficits or diseases.)

agricultural robotics

Besides speeding up agricultural processes, robotics
also minimizes human error and increases the overall
quality standards of agricultural produce.

For example, robotic harvesters may be programmed
to pick ripe fruits only, guaranteeing homogeneous
product quality and simultaneously reducing waste.
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= Advancing crop productivity and sustainability

Enhancing crop productivity with Al
Al is a key factor that influences future agricultural productivity is Al.
This can significantly improve farming efficiency.

In this regard, the mechanisms through which Al results in :

1.genetic improvement
2.efficient use of resources

3.practical applications

help to increase crop yields and further enhance resistance.
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1.genetic improvement

Analysis of large databases of genetic information and interactions with the environment
will enable Al systems to predict the likeliest changes to succeed in crop production.
This will hasten the breeding process and enhance the possibility of viable crops,thereby
improving agricultural productivity.

2.efficient use of resources

It is through such a meticulous approach to farming that crop health and yield are
maximized at the same time as the minimization of waste and environmental impacts.

3.practical applications

One experiment conducted in ~ Another example in India has been ~ Such tangible examples

California that used Al to in predicting the best planting times demonstrate the power of Al in
manage nitrogen and irrigation and crops to grow based on market = promoting agriculture and
applications in growing demand and weather patterns, which further prove its potential to
grapes. has significantly improved crop transform traditional farming
The move resulted in a 25 %  yields and farmers’ incomes. methods into more profitable,
increase in production while sustainable, and effective
using 20 % fewer water operations.

resources.
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Barriers to adoption

The implementation of Al-integrated agricultural systems encounters several
obstacles, notwithstanding the significant opportunities that Al presents to the

farming sector.

To maximize the capacity of Al to enhance crop yields, these challenges can

be classified into three main categories:

-Technological Cha"engES(Given that Al systems are complex, they require
data processing power and reliable access to the Internet, which are not always available

in rural areas or places far from cities.)

-Sociocultural ba rrierS(Farmers require considerable knowledge and training

to acquire the skills necessary to efficiently employ Al)

‘Regulatory and ethical concernsgthical concerns linked to the use of

Al in genetic engineering and breeding might even result in new regulations.)
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Advancing crop productivity and sustainability

Future perspectives

Advancements in Al Policy and Educational
Technologies Initiatives
Robotic Planting .
Harvesting Systems A dses ;
2 e Nk R Data Protection

Grenetic Enginecring GMO Use

Al Analytics 7
malytics Tax Relief

Crop Menitoring
Disecase Forecasting
Growth Adaptation
Blockchain Integration
Drone Analysis

Subsidy Policies
Farmer Education
Problem Handling
Technology Benefits

- . & & » @ L . L ] -

Future developments of Al Technology In
Agriculture
i*i

Collaboration Among 'qlw Long-Term Impacts on

Stakeholders Food Security and
 Tech Companies _ Sustainability
* Agricultural Experts ¢ Resource Optimization
* Policymakers * Reduced Water Use
* Academic Institutions * Fewer Chemicals
* Ethical Development * Crop Production Increase
= Effective Application * Waste Minimization
* Practical Al Solutions * Support for Developing
s Farmer Utility Countrics
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