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AI in crop management 
1 Pest management1 

1.1 Why it is Important? 
Agricultural pests are responsible for 20%–40% of global crop production losses 

each year. Pest infestations cost the global economy around $220 billion annually, with 
invasive insects alone causing approximately $70 billion in damages. 

1.2 Traditional Methods and Their Issues 
Farmers use various pesticides to improve both crop quality and storage life. While 

pesticides mitigate yield losses, continuous usage of pesticides leads to problems 
such as pesticide resistance, secondary pest outbreaks, breakdown of host plant 
resistance, environmental contamination, and potential health risks to consumers. 

1.3 The Application of AI in Pest Management 
1.3.1 Pests Identification 

• Installing vibration sensors on trees allows farmers to capture faint vibrations 
produced by pest larvae. AI analyzes these signals to identify characteristic 
patterns, determining whether trees are infested. Only affected trees are treated, 
enabling precision pest control. 

• Integrating IoT and AI, drones or autonomous robotic vehicles can capture 
orchard imagery. AI processes these images to identify pest presence and 
species, allowing targeted pesticide application, improving effectiveness while 
reducing chemical usage. 

1.3.2 Pest Population Monitoring 
Researchers have combined AI with smart traps to identify and count pest species 

and populations. By analyzing data from traps placed across farmland, AI monitors pest 
conditions, enabling farmers to apply pesticides only where infestations exceed 
thresholds, avoiding indiscriminate spraying. 
1.3.3 Pest Infestation Alerts 

In India, researchers collaborated with local farmers to establish a cotton pest early 
warning system. When a field shows infestation, farmers upload photos. AI identifies 
the pest species and severity, sending alerts to nearby farmers. This provides immediate, 
localized advice, allowing early pesticide application, increasing effectiveness while 
reducing chemical use. 
1.3.4 Precision Spraying of Pesticides 

Researchers have developed a machine learning-based system for drone spraying 
area recognition in precision agriculture. By classifying farmland and orchard images 
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captured by drones, the system distinguishes between sprayed and non-sprayed areas, 
achieving an average accuracy of approximately 70% with extremely fast online 
recognition. This enables real-time autonomous spraying by drones. In the future, if the 
recognition accuracy improves to over 90%, the system could support remote 
operations, facilitate precise pesticide application and reduce chemical usage. 

1.4 Key Take-Homes 
AI transforms pest management by enabling precision, efficiency, and 

sustainability. Its main applications include: 
1. Pest Identification – Early detection via vibration sensors or image analysis 

for targeted treatment. 
2. Pest Population Monitoring – AI-smart traps provide accurate pest counts and 

distribution, reducing unnecessary pesticide use. 
3. Pest Infestation Alerts – Early warning systems notify farmers promptly for 

timely interventions. 
4. Precision Spraying of Pesticides – drone systems distinguish sprayed and 

non-sprayed areas for autonomous, accurate pesticide application. 
Overall, AI helps farmers apply the right treatment, at the right place, at the 

right time, improving effectiveness while minimizing environmental impact and 
chemical usage. 

2 Disease Identification by drones2 

2.1 The Problem 
Early, accurate, detection of tomato leaf diseases is essential for managing tomato 

crops, protecting yields, and targeting problem areas before they develop. The paper 
asks: among the most recent YOLO object-detectors, which provide the best 
accuracy/speed trade-off for use in real-world agricultural settings? 

2.2 Data 
The study used the Tomato-Village object-detection dataset, consisting of 14,368 

images and 161,223 annotations, captured across three districts in Rajasthan, India. 
Images capture tomato leaves under different light and growth stages. Disease 
symptoms are enclosed in bounding boxes and class label annotations are added. Six 
disease classes are used: late blight, leaf miner, magnesium deficiency, nitrogen 
deficiency, potassium deficiency, and spotted wilt virus). A healthy leaf has no 
bounding box. The dataset contains Pascal VOC (XML) and YOLO (text) formats, 
standard in object detection. The dataset is split 80/10/10 (train/val/test), with 
augmentations (rotation, brightness/contrast, cropping, flips) randomly added to a 
percentage to simulate real-world variation. 
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2.3 The deployment process 
A UAV with camera flies in a grid pattern over tomato fields, capturing canopy 

images. The trained YOLO model scans each frame in real-time, scanning for areas 
matching the learned bounding-box patterns, and outputs detection instances with class 
labels. Not all leaves are visible, so the UAV monitoring provides a statistical map of 
disease incidence rather than a leaf count. A field-level heat map of the area is then 
built. 

2.4 YOLO overview 
YOLO (You Only Look Once) is a convolutional neural network (CNN) that was 

designed for real-time object detection. The model works by dividing an input image 
into a grid and, in a single forward pass, predicting bounding box coordinates (where 
disease exists in the image) and class probabilities. Its architecture consists of a 
“backbone” CNN for feature extraction, a “neck” (intermediate layers) for multi-scale 
feature refinement and combination, and a detection “head” that outputs predictions 
(class, locations of disease). The one-stage design avoids the slower two-step region 
proposal approach used in two-stage models - allowing for high accuracy at real-time 
speeds for UAV crop monitoring. 

2.5 Models compared 
Five YOLO versions were benchmarked, versions 8, 9, 10, 11, and 12. Training 

was standardised (100 epochs, SGD, lr 0.01, batch 64, input 640×640) and run on four 
A100 GPUs. Metrics included precision, recall, mAP (mean average precision), and 
training time. 

2.6 Key findings 
Among the five architectures, YOLOv11 gave the strongest overall performance, 

balancing high precision and recall with efficient training and inference levels. 
YOLOv12 followed closely, providing the fastest lightweight option for resource-
constrained use. YOLOv10, with its novel NMS-free design, proved reliable and 
efficient, while YOLOv8 trailed the newer models. In contrast, YOLOv9 
underperformed, with longer training times and lower accuracy. 

2.7 Implications 
These results imply that YOLO architectures are suitable for real-world 

agricultural deployment. Their speed and small size allow use on UAVs for field 
scanning, while accuracy supports reliable disease maps that guide targeted spraying. 

2.8 Conclusion 
For tomato leaf disease detection, YOLOv11 is the most effective overall, and 

YOLOv12 excels under limited resources. Their deployment in UAVs and field 
systems can improve detection, reduce chemical use, and support more sustainable 
farming. 
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3 Crop diversification using XAI 
Global climate change, population growth and land depletion possess a serious 

threat in food industry. Crop diversity is adding a new variety of the crops in the existing 
conditions. This not only mitigates soil degradation, pest infestation but also fosters 
income growth, more variety and improves soil health.  

IoT offers innovative digital solutions in many areas based on low-cost, low-
latency approaches such as edge and fog computing that respond to end-user needs on-
site. But there is also a growing need for interpretability and explainability for the 
effective use of these technologies. In this regard, Explainable Artificial Intelligence 
(XAI) plays a crucial role in agriculture by enhancing the transparency of AI-driven 
recommendations, such as those for crop selection, soil health, and pest management. 

3.1 AgroXAI 
Paper proposes and introduces an edge-based computing system, AgroXAI, which 

collects real time data using IOT and sends it to edge layer for model calculation, fog 
layer which is an intermediate networking layer between edge layer and cloud layer. 
Cloud layer can be used for additional compute and storage if needed.  

3.2 Dataset 
Dataset is available at:https://www.kaggle.com/datasets/chitrakumari25/smart-

agricultural-production-optimizing-engine.  
And it contains 2200 rows and has data for 22 different crops. 

3.3 Features used: Below is the set of features used: 

 

3.4 Models used 
Models used to determine XAI results: 

• KNN, Random Forest, SVM, DT, Light Gradient Boosting Machine 
(LGBM) and Multi-layer perception (MLP).  

3.5 XAI methods 
Below XAI methods to determine XAI results: 

1) Explain Like I’m 5 (ELI5): provides both global and local explanations. 
2) SHapley Additive exPlanations (SHAP): provides both global and local 

https://www.kaggle.com/datasets/chitrakumari25/smart-agricultural-production-optimizing-engine
https://www.kaggle.com/datasets/chitrakumari25/smart-agricultural-production-optimizing-engine
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explanations. 
3) Local Interpretable Model-agnostic Explanations (LIME): provides local 

explanations. 
4) Counterfactual: Give alternate crop recommendations, which can be 

grown by altering current soil, environmental conditions. 

3.6 Results 

Results of the paper look very promising as they not only provide global and local 
explanations, but counterfactual as well which provides alternate crop 
recommendations which can be grown. 

• ELI5 and SHAPely provided both local and global explanations whereas 
LIME provided local explanations.  

a) global explanations: how current set of features (table II above) 
impact all the crops on the dataset, we have 22 crops in the dataset. 
Report on the feature level across for all the crops. 

b) Local explanations: Crop wise detail on what features impact the 
individual crop growth. 

• Whereas Counterfactual provided alternative crop options that can be 
planted by varying the existing conditions like increasing the Nitrogen 
content or decreasing potassium content, we can also produce mangoes in 
current conditions. 

3.7 Conclusion 
XAI makes things easy to interpret and understand, it not only tells what features 

affect most in the given soil, atmosphere and weather conditions but also recommends 
which new crops can be grown with slight changes in conditions.  

Currently, farmers encounter numerous challenges in adopting AI for crop 
diversification. Like limited knowledge and skills, infrastructure barriers and 
environmental constraints. Knowledge with proper guidance, AI can uplift farmers of 
any country, agriculture still being one of the major economic drivers of any nation can 
not only make any country self-sustainable but also exporter of the crops.  

4 AI in Irrigation Management 

4.1 The Problem 
Irrigation is very important for improving crop yields and saving water. However, 

traditional irrigation still has many difficulties, such as low efficiency of water use, high 
labour cost, lack of real-time data, and increasing expenses. For small farmers 
especially, it is not easy to adopt advanced systems because of problems like 
affordability, usability, and data privacy. 

4.2 Data and Methods 
This review paper introduces different AI methods applied to irrigation. Common 

techniques include support vector machines, decision trees, artificial neural networks, 
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reinforcement learning, and hybrid approaches. It also covers expert systems, image 
processing with remote sensing, decision support systems (DSS), and multi-agent 
systems. The data usually comes from soil moisture, weather and climate records, crop 
growth, satellite images, and IoT sensors. The paper also discusses how to evaluate 
these systems, for example accuracy, scalability, interpretability, cost-effectiveness, 
and social or ethical influence. 

4.3 Key Findings 
AI can help farmers make better irrigation schedules, predict soil moisture and 

crop water needs, and reduce both water use and labour cost. For example, remote 
sensing with ML can create moisture maps, and DSS can provide useful scenarios for 
farmers to choose. Reinforcement learning can design adaptive strategies in changing 
environments. Human-centred AI and explainable AI are considered very important to 
increase farmers’ trust and adoption. But the review also points out many problems, 
such as poor quality of data, high cost for small farms, lack of technical skills, and 
difficulty of integrating AI systems with existing infrastructure. 

4.4 Implications 
The paper shows that AI irrigation is not only a technical issue but also a human 

and social one. Farmers want affordable and easy-to-use systems, policymakers care 
more about sustainability and regulations, while scientists need systems that can 
integrate with other research tools. If these requirements are satisfied, AI has the 
potential to improve food security, save water resources, and reduce negative 
environmental impacts. 

4.5 Conclusion 
AI has strong potential to make irrigation management more precise, efficient, and 

sustainable. But these benefits will only come true if we solve problems about data, 
cost, usability, and ethics. In the future, human-centred, explainable, and adaptive AI 
systems will be more useful, because they can support farmers’ decisions instead of 
simply replacing them. 

4.6 Limitations of the Paper 
Although this review provides a wide overview of AI techniques for irrigation, it 

still has some limitations. The paper mainly introduces different methods and 
application cases, but it does not give a clear summary of what a typical AI-assisted 
irrigation system looks like. For example, there is no explicit framework that shows 
how sensors, data processing, machine learning models, and decision support should 
be connected as one complete system. Because of this, readers who want to design or 
implement a system still need to check many other papers and combine the information 
by themselves. This makes the review less practical for people who expect a ready-to-
use architecture or guidelines. 
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5 Advanced Machine Learning for Regional Potato Yield 

Prediction 
5.1 Introduction 

Potatoes are a staple crop and a key economic driver in Prince Edward Island (PEI), 
Canada. Since production in this region depends almost entirely on rainfall rather than 
irrigation, yields are highly sensitive to climatic variation. Traditional regression and 
process-based models have limited ability to capture nonlinear and multi-factor 
interactions between weather, soil, and crop development. This study applies machine 
learning (ML) methods to predict potato yields at the postal-code level and to identify 
the most influential environmental drivers. 

5.2 Data and Preprocessing 
The dataset spans 1982–2016 and integrates three main categories of variables: (1) 

agroclimatic indicators such as temperature and precipitation, (2) soil parameters 
including water retention capacity, and (3) remote sensing measures, particularly the 
Normalized Difference Vegetation Index (NDVI). To address noise and skewed 
distributions, polynomial and power transformations were applied. This preprocessing 
step ensured that the models could better capture relationships between features and 
yields. 

5.3 Methodology 
Multiple ML models were tested, ranging from linear approaches (ridge and lasso 

regression) to decision trees and ensemble models. Random Forest, Gradient Boosting, 
AdaBoost, and stacking ensembles were of particular interest. The evaluation used 
time-series cross-validation: earlier years were used for training while later years tested 
predictive performance. Metrics included mean squared error (MSE), root mean 
squared error (RMSE), and the coefficient of determination (R²). 

5.4 Results 
Tree-based ensemble methods achieved the highest predictive accuracy. Random 

Forest performed best, with MSE = 0.014 (t/ac)², RMSE ≈ 0.119 t/ac, and R² ≈ 0.99. 
Gradient Boosting also delivered strong results, though slightly weaker. By contrast, 
linear models showed higher error and lower R², reflecting their inability to capture 
nonlinear crop–environment dynamics. Feature importance analysis, conducted with 
SHAP values, highlighted temperature variables and NDVI as the dominant predictors, 
with precipitation and soil water retention also exerting significant influence. 

5.5 Discussion 
The findings underscore the effectiveness of ensemble ML models in modeling 

complex agricultural systems. The identification of essential drivers provides not only 
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predictive capacity but also agronomic insight. Importantly, the study estimates that 
improved prediction could generate annual economic benefits of around 81,600 CAD 
per farm in PEI by enhancing planning and reducing uncertainty. However, limitations 
include weaker performance in sparsely farmed areas and potential over- or under-
estimation in extreme yield cases. The models’ generalizability to other regions remains 
uncertain and may require retraining. 

5.6 Conclusion and Future Work 
This research demonstrates that advanced ML, particularly Random Forest, is 

highly effective for regional yield prediction. Integrating climate, soil, and remote 
sensing data enables both accurate forecasts and improved understanding of yield 
drivers. Future directions include incorporating additional Earth observation indices 
(e.g., Leaf Area Index), extending analysis to multiple crops and climates, and adding 
socio-economic factors to broaden the models’ applicability in sustainable agriculture. 

6 Artificial intelligence in agriculture: Advancing crop 

productivity and sustainability 

6.1 Background 
The rapid growth of the global population, expected to reach 10 billion by 2050, 

presents unprecedented pressure on agriculture to sustainably increase production.  
With the added challenges of dwindling water resources, shifting climate patterns, 

and the loss of agricultural land, there is an urgent need for innovative solutions to boost 
farm productivity and efficiency. Among the most promising of these solutions is 
Artificial Intelligence (AI), which has the potential to revolutionize agricultural 
practices worldwide. 

6.2 AI in agriculture 
AI is changing the face of agriculture from environmental effect forecasts to 

efficient resource use and crop management. 
6.2.1 precision farming 

Abundant data have been collected from agricultural environments using GPS and 
IoT devices for precision farming. This dataset was used to obtain the temperature, crop 
health, fertilizer availability, and soil moisture levels. AI algorithms assess these data 
to provide relevant and helpful recommendations to farmers regarding the sowing, 
irrigation, and harvesting of crops. 
6.2.2 machine learning 

These models can help farmers to enhance their planning strategies and risk 
profiling associated with unpredictable weather conditions. Moreover, machine 
learning algorithms can detect trends indicative of illness or vermin, thereby triggering 
early intervention measures. 
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6.2.3 agricultural robotics 
Besides speeding up agricultural processes, robotics also minimizes human error 

and increases the overall quality standards of agricultural produce.  
For example, robotic harvesters may be programmed to pick ripe fruits only, 

guaranteeing homogeneous product quality and simultaneously reducing waste. 

6.3 Enhancing crop productivity with AI 
AI is a key factor that influences future agricultural productivity is AI. This can 

significantly improve farming efficiency.  
6.3.1 genetic improvement 

Analysis of large databases of genetic information and interactions with the 
environment will enable AI systems to predict the likeliest changes to succeed in crop 
production. This will hasten the breeding process and enhance the possibility of viable 
crops, thereby improving agricultural productivity. 
6.3.2 efficient use of resources  

It is through such a meticulous approach to farming that crop health and yield are 
maximized at the same time as the minimization of waste and environmental impacts. 

6.4 Barriers to adoption 
The implementation of AI-integrated agricultural systems encounters several 

obstacles, notwithstanding the significant opportunities that AI presents to the farming 
sector. 
6.4.1 Technological challenges 

Given that AI systems are complex, they require data processing power and 
reliable access to the Internet, which are not always available in rural areas or places 
far from cities. 
6.4.2 Sociocultural barriers 

Farmers require considerable knowledge and training to acquire the skills 
necessary to efficiently employ AI. 
6.4.3 Regulatory and ethical concerns 

Ethical concerns linked to the use of AI in genetic engineering and breeding might 
even result in new regulations. 

6.5 Future perspectives 
The potential of AI in agriculture is very large; it not only has the capability of 

changing the face of agriculture, but also increasing crop output. AI-powered solutions 
are envisioned to further infiltrate with the advancement of technology and its 
affordability, bringing about radical changes in food production, processing, and 
delivery. 

 

 
 
 


