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INTRODUCTION



AI and IoT-Driven City-Scale
Sensing for Roadside
Infrastructure Maintenance



MOTIVATION
Reactive maintenance (citizen reports,
manual audits) is slow, costly, and
incomplete - many issues go
unreported.

Cities need proactive, scalable sensing
as networks expand and budgets
tighten.

Opportunity: Repurpose municipal
fleets & AI/IoT/5G to automate real-time
detection of roadside “points of
maintenance” (PoMs) and improve
safety and service delivery.



SOLUTION AND KEY FINDINGS

ML pipeline:
1.  Stage 1: Pre-trained detector filters relevant objects

(e.g., road signs, bus shelters) and supports optional
privacy filtering.

2.  Stage 2: Custom models per use case:
a.Damaged signs: object detection with boxes,

incremental learning and class imbalance (~10%
positives).

b.Dumped rubbish: binary classifier & post-
filtering to remove bins/trees.

c.Bus shelters: custom model (Rekognition
Custom Labels).

Framework: AIoT-CitySense (5 layers: Mobile IoT,
Ingestion, Storage, Analytics, Decision Support).

Deployment: “Mobile IoT-RoadBot” on 11 waste trucks
in Melbourne with stereo cameras, GNSS, edge
compute, 5G, data to AWS AI services. 1 FPS frame
sampling; map dashboard for triage.

Results Damaged signs Dumped rubbish Bus shelter

F1 Score 71 97 96

Solution only Solution & reports Reports only

Detection 85% 98% 2%
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RESULTS

Results:

85% more dumped-rubbish PoMs than resident reports; 94% of overlaps
found 3–4 days earlier.

Ops: ~5k images/truck/day; ~A$200/day cloud cost fleet-wide.

https://docs.google.com/spreadsheets/d/1DUF2isFWsqVSYhbaACYtbgcLi_YjDqpE3GLQIVgkKQg/edit#gid=69851113
https://docs.google.com/spreadsheets/d/1DUF2isFWsqVSYhbaACYtbgcLi_YjDqpE3GLQIVgkKQg/edit#gid=69851113
https://docs.google.com/spreadsheets/d/1DUF2isFWsqVSYhbaACYtbgcLi_YjDqpE3GLQIVgkKQg/edit#gid=69851113


IMPLICATIONS / ETHICAL CONSIDERATIONS

Operational impact:
1.  Proactive, city-scale sensing using existing

fleets; faster remediation, reduced reliance
on citizen labor, better coverage in low-
participation areas.

2.Human-in-the-loop workflow (accept/
ignore) enables continuous model
improvement and accountable actioning.

Equity and governance:
1.Potential to improve service equity across

suburbs if routes cover the whole
municipality and prioritization is
transparent.

Privacy and transparency:
1.  Cameras capture people/plates/

properties, requires robust, audited
anonymisation (face/plate blurring), data
minimization/retention limits, clear
purpose limitation, and public
communication.

2.Cloud/vendor dependence (Rekognition)
raises cost control, portability, and
resilience considerations.



LIMITATIONS / FUTURE WORK

Measurement and modeling:
1.  Report standard detection metrics

(mAP@IoU), condition-specific
breakdowns (day/night/rain), latency,
and calibration conduct independent
field audits for ground truth.

2.  Cascade risk: misses in Stage 1 cap
recall consider end-to-end multi-task
detectors (e.g., YOLO/Detectron2) and
add segmentation for fine-grained
damage.

3.  Address class imbalance (focal loss,
class weighting, targeted sampling,
hard-negative mining), adopt active
learning with human-in-the-loop.

Scope expansion:
1.  Extend to potholes, cracks, lane

marking quality, and other
assets. Integrate prioritisation
models and work-order systems.

Robustness and scale:
1.  10–20% data loss (coverage/

weather) push lightweight prefilters/
inference to edge to reduce
bandwidth/cost and mitigate
outages, add drift monitoring.

2.Generalisation from a single council/
fleet/camera vantage, apply domain
adaptation and standardise
interfaces for other fleets.



CYBER THREATS TO
CRITICAL ENERGY
INFRASTRUCTURE



MOTIVATION
Sophisticated Cyberattacks:
Traditional defenses are
insufficient
High Stakes: Economic and
social stability are at risk.



SOLUTION AND
KEY FINDINGS

Using AI to shift from reactive to proactive
cybersecurity.

The paper proposed 3 solutions to detect anomalies or
suspicious patterns at the beginning of an attack.



AI SOLUTIONS

Deep Learning

To detect ransomware in energy
control systems



AI SOLUTIONS

Deep Learning

To detect ransomware in energy
control systems

Machine Learning

To detect anomalies in operational
hardware



AI SOLUTIONS

Deep Learning

Predictive Analytics 

To detect ransomware in energy
control systems

To detect system failures or
attacks in the power distribution
network

Machine Learning

To detect anomalies in operational
hardware



SIGNATURE-BASED SYSTEMS AI SYSTEMS

74.9% of threats accurately
detected

94.7% of threats accurately
detected

70% faster incident response 

12% false positive rate 4% false positive rate

RESULTS



Faster security
responses 

Security operators can
intervene earlier in the

threat cycle

IMPLICATIONS AND ETHICAL CONSIDERATIONS

Reduced alert fatigue



LIMITATIONS AND FUTURE WORK

Adversarial attacks Explainability of AI
systems

Automated mitigations



PHYSICAL SECURITY
PROTECTION OF CRITICAL
INFRASTRUCTURE



MOTIVATION

Current surveillance systems can
result in human-related errors,
high costs and limited scalability. 



SOLUTION AND
KEY FINDINGS

Smart video-surveillance systems using
distributed CPS 
Uses edge devices to perform local video analytics and
cloud servers to aggregate the data from these nodes. 

Core innovation: Systems ability to reconfigure itself by
switching modes based on detected threats. 



RESULTS 

System performance
and efficiency 

Performs in real-time
at 32-98 fps. 

76% reduction is
resource

consumption.

Human detection

Achieves an F1-score
of 0.9646 - nearly
matching the best

model, but 36x
smaller in size

Facial recognition

Achieves 99.5% on a
standard data set

Object tracking

Performs effectively
in multi-camera

setups 



Demographic biasRisk of function creep

IMPLICATIONS AND
ETHICAL
CONSIDERATIONS

Lack of privacy and
anonymity



LIMITATIONS
AND FUTURE
WORK

Environmental
robustness

Scalability of re-
identification

Vulnerability to
adversarial attacks



SENSOR FAULT DETECTION
IN WASTEWATER
TREATMENT PLANTS. 



MOTIVATION
Traditional methods struggle to
identify complex, time-based
sensor failures, which can cause
environmental harm and energy
waste.



DATA & SOLUTION

Data Collection
Data from 12 sensors over 1 year ~5.3 million points
Includes:

Chemical measurements: ammonia, oxygen,
nitrates
Operational measurements: blower frequencies,
temperatures

Data Preprocessing
Missing values filled with the last known reading
Engineered features from ammonia (e.g., mean,
variance)
Normalised for training

LSTM Architecture
type of neural network that processes sequences of
data, remembering important patterns over time while
ignoring irrelevant information, making it ideal for time-
series

Multi-layered neural network with 4 LSTM layers (60
units each)
Processes 60-minute data windows
Learns temporal patterns for normal vs. faulty
behaviour
Gates decides what to remember, forget, or pass
forward



RESULTS

Mehood / Metric Variance Analysis PCA-SVM LSTM

Accuracy (%) 93.3 93 96.5

Recall (%) 80.9 94.1 93.9

Precision (%) 70.7 65.9 81.7

F1-score (%) 75.4 77.5 87.4

*ARIMA could not distinguish between normal and faulty conditions because it only
considers short-term memory.

The LSTM method achieved 96.5% overall accuracy, with
an 11% improvement in precision compared to

traditional approaches, which scored 93% accuracy and
65.9–70.7% precision.



LIMITATIONS 

Scalability of re-
identification

Vulnerability to
adversarial attacks

AND FUTURE WORK
One sensor fault type focus - only collective faults in
ammonia sensors, not other sensor failures or fault
categories

Geographical specificity - being a treatment plant in
Valdobbiadene (where Prosecco wine is produced),
experience unusual patterns of organic mass during the
harvest season.

Single Facility Validation - only used data and tested in
the facility that caters to a Population Equivalent (PE)
load of 10,000.

Multi site validation (<1,000 PE to > 100,000 PE)
Cross-regional testing in facilities without seasonal
agricultural loading patterns
Multi-sensor fault detection - expand beyond
ammonia sensors (e.g. dissolved oxygen, pH )



Workforce
Displacement

“goal is a system with
minimal human

supervision”

Over-reliance on
automation

reduction in human
oversight and backup

monitoring 

IMPLICATIONS / ETHICAL CONSIDERATIONS

Algorithmic
Transparency

Black Box/Limited
interpretability



CLIMATE CHANGE &
PROTECTING CRITICAL
INFRASTRUCTURE



MOTIVATION
Effects of Climate Change getting worse
and posing threat to Critical National
Infrastructure
2021 Texas Snowstorms: 4.5 million homes
without power
2023 Cyclone Gabrielle: critical road &
transport infrastructure destroyed, ~$1b
spent on recovery
Events have severe consequences
including loss of life



AI MODELS TO
PREDICT IMPACT
Train models to produce predictive
simulations of the impact of climate change
on nearby infrastructure

Delteres: Project based out of the
Netherlands to simulate effects of sea level
rise and its impact on infrastructure

Solution #1:
Inputs:

Nearby Infrastructure Information🏘️
Climate Data🌏

Outputs:

Predictions of how infrastructure (eg,
roads, drainage systems, etc) will be
impact by sea level rise

🌊

Protection recommendations🧱

Goal:
Help build resilient infrastructure and
prevent outages / damage caused by
sea level rise

🏰



AI POWERED EARLY
WARNING SYSTEMS
Train models to identify precursor indicators
to climate events for early alerting and
response effrots.

FloodNet: Deep learning model to identify
when flooding is likely to occur and provide
early alerting for timely responses. 

Same techniques can be used to build
models for alerting on other events (eg,
wildfires)

Solution #2: Inputs:
Images of bodies of water🏞️

Data metrics (eg, water level & flow rate) 💦

Outputs:

Likelihood of flooding🎲

Severity of possible flooding⚠️

Goal:

Provide early warnings to help cities
prepare & initiate timely responses

📣



LIMITATIONS
Availability of sufficient volumes of high-
quality region-specific data

Models need high quality, up to date
information

Limited results from real world testing
How do results compare to existing
human capabilities? 



ETHICAL
CONSIDERATIONS

Performance & Explainability
Requires low rate of false negatives
Humans need to understand how AI
got to its outputs

Climate Considerations
Energy use & carbon footprint of AI
models
Contributing to underlying problem



DISCUSSION



Questions
Given that AI models like deep learning and LSTMs are not always transparent, what ethical and safety concerns arise when they are used to
make critical decisions in energy infrastructure? What would make you comfortable (or uncomfortable) with these "black box" algorithms
managing the power grid?

How can we ensure accountability and maintain public trust when an AI system, rather than a human, makes a decision that leads to a
widespread power outage or security breach?

The papers suggest AI can reduce "alert fatigue" for human operators. But what is the ideal division of labour between AI and humans in
critical infrastructure? Where should the AI's role end and the human's begin?

What are the areas where you can see AI having the most impact or being the most trusted to protect critical infrastructure, and what level of
human oversight would be needed to implement these systems in the real world? 

Critical infrastructure is often invisible to the public until something goes wrong. How much transparency should there be about the role AI is
playing in protecting these systems? Would too much detail risk security, or would it help build public trust?

While designed for security, could the anonymised data from this system be used for other beneficial smart city applications? For instance,
optimising pedestrian flow, managing emergency evacuations, or planning public services? How could this be done without compromising
the privacy of people mentioned earlier?


