
Introduction: AI's Role in Safeguarding Critical Infrastructure 
 
Critical infrastructure spanning energy grids, transportation, water systems, and urban 
assets underpins society but faces growing threats from climate change, cyberattacks, 
faults, degradation, and physical intrusions. Artificial intelligence (AI) offers proactive, 
efficient defenses, outperforming traditional approaches. This seminar examines AI 
applications in these areas, highlighting innovations, benefits, and challenges. 
 
First, to counter degrading infrastructure, AIoT-CitySense equips waste trucks with cameras 
and AI for roadside monitoring in Melbourne, detecting dumped rubbish (97% F1-score), 
vandalized shelters (96%), and damaged signs (71%) 85% more issues than citizen reports, 
at low cost (~AUD $200/day) [1]. 
 
To protect against cyberattacks in energy sectors, AI excels: Deep learning detects 
ransomware with 98% accuracy by monitoring networks. Algorithms like Random Forest and 
SVM spot hardware anomalies, cutting undetected incidents by 90%. Predictive analytics 
forecast failures with 95% precision, reducing response times by 70% and false positives [2]. 
 
For fault protection, LSTM networks in wastewater plants analyze sensor data over time, 
achieving 96.5% accuracy in detecting ammonia faults surpassing variance analysis (93.3%) 
and PCA-SVM (93%) minimising false alarms and environmental risks [3]. 
 
Against physical intrusions, reconfigurable CPS for surveillance uses edge CNNs (e.g., 
MobileNetV2) for real-time human detection and cloud-based tracking with Kalman filters 
and facial recognition, switching modes for threats while addressing privacy and bias 
concerns [4]. 
 
Finally, AI aids climate adaptation with Deltares models simulating sea-level rise effects on 
infrastructure, suggesting protections like sea walls. FloodNet uses deep learning on images 
and water data for real-time flood predictions, enabling cities to manage power and water to 
prevent outages [5]. 
 
These cases illustrate AI's shift to predictive protection, with ethical issues like data privacy 
and explainability. Future work includes enhancing resilience and scalability for broader 
impact. 



AIoT-CitySense: AI and IoT-Driven City-Scale Sensing for Roadside Infrastructure 
Maintenance 

Motivation 
Traditional roadside infrastructure maintenance relies on citizen reports or manual 
inspections by council staff. This approach is reactive, slow, and costly, often resulting in 
delays, inaccurate data, and unreported issues. With cities expanding and infrastructure 
budgets under pressure, there is a strong need for proactive, scalable, and cost-efficient 
solutions. Emerging smart city technologies, particularly AI, IoT, and 5G, offer the potential to 
transform infrastructure monitoring into a real-time, automated process that can improve 
safety, efficiency, and citizen satisfaction [1]. 
 
Solution and Key Findings 
The paper [1] introduces AIoT-CitySense, a flexible framework that integrates IoT-enabled 
mobile assets (such as waste collection trucks) with AI-based analytics for city-scale 
sensing. A tailored adaptation, called Mobile IoT-Roadbot, was piloted in Melbourne, 
Australia, using 11 waste trucks fitted with stereo cameras, GNSS, and 5G connectivity. 
These vehicles acted as roaming sensor nodes, collecting visual and location data during 
routine operations [1]. Data was processed via AWS cloud services and custom deep 
learning (DL) models, which detected damaged road signs, dumped rubbish, and vandalized 
bus shelters. The pilot demonstrated: 

1.​ 85% more roadside issues detected compared to citizen reporting, often 3-4 days 
earlier. 

2.​ High accuracy: DL models achieved 97% F1-score for dumped rubbish, 96% for bus 
shelters, and 71% for damaged road signs [1]. 

3.​ Scalability: Trucks processed ~5,000 images/day each, at a modest cloud cost 
(~AUD $200/day across all trucks). These results validate the framework’s 
effectiveness and real-world feasibility for proactive maintenance 

 
Implications / Ethical Considerations 
The deployment of AIoT-CitySense highlights how smart city technologies can reduce 
reliance on citizen labor, speed up maintenance, and improve urban liveability. It supports a 
shift from reactive to proactive governance, increasing public trust in municipal services. 
However, ethical issues arise around data privacy and surveillance. Since roadside cameras 
inevitably capture images of people, vehicles, or private property, anonymisation and filtering 
are critical. Transparency in how data are collected, stored, and used to ensure public trust. 
Additionally, councils must balance automation with equitable access, ensuring that benefits 
extend beyond well-resourced urban areas to rural and marginalised communities. 
 
Limitations / Future Works 
While promising, the system faces challenges: 
Data limitations: Detection of damaged road signs performed less accurately due to limited 
training datasets (~10% damaged sign images). Expanding datasets will improve reliability. 

1.​ Technical constraints: Network coverage and weather conditions caused 10-20% 
daily data loss. Edge deployment of DL models is suggested to reduce reliance on 
cloud bandwidth and lower costs. 

2.​ Scope: Current focus is on three roadside issues. Future work should expand to 
pothole detection, road surface monitoring, and line marking analysis. 

3.​ Scalability: Although effective in one municipality, broader deployment requires 
consideration of infrastructure costs, interoperability with different vehicle fleets, and 
standardization across regions. 



Transforming Cybersecurity into Critical Energy Infrastructure: A Study on the 
effectiveness of Artificial Intelligence 

Motivation: This paper [2] explores the applications of AI to defend critical energy 
infrastructure against cyber threats. Cyber attacks against the energy sector are becoming 
increasingly sophisticated. This threatens the continuity of energy services, risking significant 
economic and social instability. 
 
Solutions/key findings: The paper [2] evaluates three AI solutions against traditional 
signature-based cybersecurity systems. Collectively, the AI models achieved 94.7% threat 
detection accuracy, versus 74.9% for traditional systems. The AI models also reduced 
incident response times by over 70% and reduced the false positive rate from 12% to 4%. 
The three AI solutions that were evaluated were: 

1.​ Deep learning for ransomware detections: A deep learning model was applied to 
energy control systems. By monitoring real-time network operations the model could 
identify activity patterns indicating a ransomware attack. This solution achieved a 
98% detection rate of ransomware threats. 

2.​ AI algorithms to secure operational hardware: Machine learning algorithms (Random 
Forest and Support Vector Machine) were used to analyse behavioural patterns 
within the operational hardware that manages energy facilities. The algorithms 
performed anomaly detection, leading to a 90% reduction in undetected security 
incidents compared to traditional methods. 

3.​ Predictive analytics for failure prevention: AI was used to analyse large volumes of 
operational data from the power distribution network to predict disruptions before 
they occurred. By identifying patterns indicating potential system failures or cyber 
attacks, the model achieved 95% precision in failure prediction and reduced system 
outages by 70%. 

 
Implications: These results confirm that integrating AI can help to shift from a reactive to 
proactive cybersecurity approach in critical energy infrastructure. All three solutions use AI to 
detect anomalies or suspicious patterns at the beginning of an attack, allowing security 
operators to intervene earlier in the threat cycle. Operationally, the reduction in false 
positives also addresses the critical issue of “alert fatigue”, allowing human security teams to 
allocate their time and financial resources efficiently. A 70% reduction in incident response 
time shows that AI can reduce the time between detection and mitigation. Further supporting 
this, the paper explored the potential for threat mitigation using AI, such as automated 
system isolation, account deactivation and security patching. 
 
Limitations/Future work: 

1.​ Adversarial Attacks: The paper does not address adversarial attacks that 
specifically target AI models. Developing AI systems that are resilient to attack is an 
important area for future research. 

2.​ Explainability: The paper discussed the issue of explainability, as many NN operate 
as “black box” algorithms. This lack of transparency limits security operators’ ability to 
understand why a threat was flagged, reducing trust in AI-driven decisions. 

3.​ Automation: Although automation offers clear benefits, the use of AI to initiate 
mitigations in critical energy infrastructure raises concerns about fail-safe 
mechanisms. Errors could create safety hazards or economic disruptions. 

4.​ Deployment: There are significant implementation costs and integration challenges 
when deploying AI in legacy energy infrastructure. Addressing these concerns is 
important to ensure any AI solutions proposed are feasible. 



Monitoring and detecting faults in wastewater treatment plants using deep learning 
 
Motivation: 
In this paper the researchers developed an automated system to detect faults in wastewater 
treatment plant sensors, focusing on ammonia sensors in oxidation tanks. Traditional methods 
struggle to identify complex, time-based sensor failures, which can cause environmental harm 
and energy waste. To address this, the team used Long Short-Term Memory (LSTM) networks, a 
type of deep learning model that captures temporal patterns by retaining relevant past 
information while ignoring irrelevant data. This is to catch Sensor faults, which can lead to 
untreated discharge, strain the electrical grid, and disrupt 24/7 monitoring.  

Solution 
Data Collection Data from 12 sensors over a year (438,181 readings each) at a Italian 
treatment plant [3], including chemical (ammonia, oxygen, nitrates) and operational 
measurements (blower frequencies, temperatures). 
LSTM Architecture: They built a multi-layered neural network with four LSTM layers, each 
containing 60 processing units [3]. The network processes 60-minute windows of data, 
automatically learning which temporal patterns indicate normal versus faulty behaviour. Each 
LSTM layer includes gates that control what information to remember, forget, or pass forward. 
Data Preprocessing: Missing values were filled with the last known readings, statistical 
features from ammonia (mean, variance, etc.) were engineered, normalised for training. 
Window-Based Analysis: Rather than analysing individual sensor readings, the system 
examines sequences of data over hour periods to detect "collective faults" - problematic 
patterns that emerge across multiple readings rather than single anomalous points. 

Key findings 
Baseline Comparisons: The LSTM approach was tested against three established methods: 
• Variance Analysis: Simple statistical threshold detection 
• ARIMA Time Series: Classical forecasting model that failed to detect collective faults 
• PCA-SVM: Traditional machine learning combining feature reduction with classification  
Performance Superiority: The LSTM method achieved 96.5% accuracy compared to 93% for 
traditional approaches [3].  
Method / Metric Variance Analysis PCA-SVM LSTM 

Accuracy (%) 93.3 93.0 96.5 
Recall (%) 80.9 94.1 93.9 

Precision (%) 70.7 65.9 81.7 
F1-Score (%) 75.4 77.5 87.4 

The 11 percentage point improvement in precision from LSTM means less false alarms, 
reducing unnecessary maintenance costs and operator fatigue from alert overload. 

Implications / Ethical Considerations: 
• Environmental Protection: Prevents untreated discharge contaminating water bodies 
• Public Health: Reduces waterborne disease risk from undetected failures 
• Operational Equity: Reduces false alarms 
• Data Privacy: Infrastructure monitoring raises surveillance concerns 
• Technology Dependence: Over-reliance may reduce human expertise 
Limitations / Future Work: 
• Single Plant Validation: Only tested on one facility - generalizability unknown 
• Limited Fault Types: Focused on ammonia sensors only 
• Real-time Implementation: 60-minute windows could be too slow for rapid faults 
• Future Directions: Multi-plant, faster prediction, additional sensors, lightweight models 



Reconfigurable cyber-physical system for critical infrastructure protection in smart cities via smart 
video-surveillance 
 
Motivation  
Traditional CCTV surveillance depends on human operators, leading to high costs, errors, and limited 
scalability. Smart video-surveillance with distributed CPS and edge devices overcomes these issues by 
performing local analytics, reducing traffic, latency, and costs, while enhancing critical infrastructure 
protection in smart cities [4]. 
 
Solution and key findings  
1. Edge Node Processing: 
Local processing is performed on high-performance, low-power System-on-Chip (SoC) devices, assisting in 
achieving real-time performance, enabling efficient video stream management.  
The edge nodes are connected to a surveillance device and uses subtraction (Mixture of Gaussians) to 
identify moving objects. These regions are then analysed by an efficient Convolutional Neural Network 
(CNN), specifically an optimised version of MobileNetV2, to detect humans in real-time [4]. 
2. Cloud Server Processing: 
The cloud server aggregates processed data and video streams from multiple edge nodes to perform 
advanced analytics. It tracks individuals across different camera views using Kalman filters and appearance 
features, identifies faces through a pipeline with MTCNN and MobileFaceNet, and monitors secure 
perimeters by mapping all camera feeds to a common real-world coordinate system [4].  
 
The System performance and efficiency  
The system operates in real-time at 32-98 fps [4]. Its adaptive bandwidth management reduces resource 
consumption by 76% by defaulting to low resolution and switching to high resolution only during detections. 
 
Human detection  
Achieved an F1-score of 0.9646, nearly matching the best model while being 36x smaller (0.88MB), 
enabling highly efficient performance [4]. 
 
Facial recognition 
Reached 99.5% accuracy on a standard dataset, with results showing image resolution is critical for 
classification [4]. 
 
Object tracking  
Performed effectively in multi-camera setups, distributing tasks across edge nodes while maintaining 
real-time performance [4]. 
 
Implications/ethical considerations  
Although the paper does not address ethics, key concerns arise. Automated tracking in public spaces 
threatens privacy and anonymity. Facial recognition may show demographic bias, risking false 
positives/negatives in critical infrastructure contexts. Finally, as a powerful surveillance tool, the system risks 
function creep beyond its intended purpose. 
 
Limitations/future work  
Environmental robustness  
The paper evaluates metrics such as frame rate and bandwidth reduction, but real-world performance can 
decline due to untested environmental factors such as poor lighting, weather, or dirty camera lenses. 
Scalability of re-identification 
The system tracks individuals within a single camera view and automates identification, but the paper lacks 
evaluation of long-term tracking and complex re-identification scenarios. 
Vulnerability to adversarial attacks 
The system relies heavily on deep learning models such as CNNs, which are vulnerable to adversarial 
attacks - small changes to clothing or accessories can cause missed detections or misidentifications. 



AI-enabled strategies for climate change adaptation: protecting communities, 
infrastructure and businesses from the impacts of climate change. 

Motivation 
As the effects of climate change continue to worsen, it is becoming increasingly common for 
infrastructure to be badly impacted by the effects of climate related weather events. In 2021, 
snowstorms in Texas crippled the electricity grid leaving 4.5million homes and businesses 
without power. Closer to home, the effects of Cyclone Gabrielle in 2023 saw critical road and 
transport infrastructure destroyed and strained agricultural food supply. [5] discusses how 
the increasing rate of these events necessitates the need for protections against the 
consequences of these events on critical national infrastructure and the role AI can play in 
these protections. 
 
Solutions 
The paper highlights two key areas where AI systems can be applied to protect critical 
infrastructure from the effects of climate change: predictive simulations of climate effects and 
early warning systems. Predictive simulations can be used to analyse how the effects of 
climate change, such as sea level rise, are likely to impact infrastructure within specific 
regions. The paper discusses an AI model, called Deltares, which is used to simulate the 
impacts of sea level rise in the Netherlands and the potential impact on infrastructure. The 
model ingests data about the nearby infrastructure, along with climate data to model the 
region and predict how critical infrastructure, such as drainage systems and roads, could be 
affected by sea level rise. The model is also capable of recommending different protections 
against these risks (e.g., sea walls) and modelling how this can reduce the impact of climate 
events. 
 
AI can also be used to predict both the likelihood and severity of flooding in real time. The 
paper discusses a model, named FloodNet, as an example of this application. The model 
uses deep learning to analyse images of relevant bodies of water along with metrics on 
factors such as water level and flow rate to predict the likelihood and severity of flooding 
taking place. These same techniques can also be applied to other events, such as wildfires, 
to extend the application of these tools. Having these early warning systems allows cities to 
prepare and better manage infrastructure (such as power and water) to avoid widespread 
outages. 
 
Limitations 
Both models are limited by the quality of available data. For the models to perform optimally, 
high-quality region-specific data is needed but often may not be readily available. Equally, 
these models aren’t yet widely used so it is unclear how the outcomes of these models will 
compare to infrastructure protection work done by humans. 
 
Ethical Considerations 
For both applications, model explainability is a key ethical concern. The risks of false 
negatives can have detrimental consequences, including loss of life, so it’s crucial that 
humans provide oversight into the models’ application and can understand how outcomes 
are determined. Another ethical concern is the energy usage and carbon footprint of these AI 
systems. While the AI may be helping protect against the possible impacts of climate 
change, it is simultaneously contributing to the underlying issue, especially when models are 
powered by ‘dirty’ energy sources such as coal and gas. 
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